Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria

نویسندگان

  • Alexis S. Templeton
  • Kung-Hui Chu
  • Lisa Alvarez-Cohen
  • Mark E. Conrad
چکیده

Carbon isotope fractionation factors reported for aerobic bacterial oxidation of CH4 ðaCH4–CO2Þ range from 1.003 to 1.039. In a series of experiments designed to monitor changes in the carbon isotopic fractionation of CH4 by Type I and Type II methanotrophic bacteria, we found that the magnitude of fractionation was largely due to the first oxidation step catalyzed by methane monooxygenase (MMO). The most important factor that modulates the ðaCH4–CH3OHÞ is the fraction of the total CH4 oxidized per unit time, which strongly correlates to the cell density of the growth cultures under constant flow conditions. At cell densities of less than 0.1 g/L, fractionation factors greater than 1.03 were observed, whereas at cell densities greater than 0.5 g/L the fractionation factors decreased to as low as 1.002. At low cell densities, low concentrations of MMO limit the amount of CH4 oxidized, while at higher cell densities, the overall rates of CH4 oxidation increase sufficiently that diffusion of CH4 from the gaseous to dissolved state and into the cells is likely the rate-determining step. Thus, the residual CH4 is more fractionated at low cell densities, when only a small fraction of the total CH4 has been oxidized, than at high cell densities, when up to 40% of the influent CH4 has been utilized. Therefore, since Rayleigh distillation behavior is not observed, dC values of the residual CH4 cannot be used to infer the amount oxidized in either laboratory or field-studies. The measured ðaCH4–CH3OHÞ was the same for both Type I and Type II methanotrophs expressing particulate or soluble MMO. However, large differences in the dC values of biomass produced by the two types of methanotrophs were observed.Methylosinus trichosporium OB3b (Type II) produced biomass with dC values about 15& higher than the dissimilated CO2, whereasMethylomonas methanica (Type I) produced biomass with dC values only about 6& higher than the CO2. These effects were independent of the magnitude of the initial carbon isotope fractionation caused by MMO and were relatively constant despite changing ratios of assimilatory to dissimilatory carbon transformation by the organisms. This suggests that the difference in biomass carbon isotopes is primarily due to differences in the fractionation effect at the formaldehyde branch point in the metabolic pathway, rather than assimilation of CO2 by Type II methanotrophs. 2005 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria

Variation in the natural abundance stable carbon isotope composition of respired CO2 and biomass has been measured for two types of aerobic bacteria found in contaminated land sites. Pseudomonas putida strain NCIMB 10015 was cultured on phenol and benzoate and Rhodococcus sp. I1 was cultured on phenol. Results indicate that aerobic isotope fractionations of di€ering magnitudes occur during aero...

متن کامل

Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem

Carbon isotopic fractionations in the processes of CH4 emission from paddy field remain poorly understood. The δ(13)C-values of CH4 in association with production, oxidation and transport of CH4 in different pools of a paddy field were determined, and the stable carbon isotope fractionations were calibrated to assess relative contribution of acetate to CH4 production (fac) and fraction of CH4 o...

متن کامل

Stable carbon isotope fractionation during aerobic and anaerobic transformation of trichlorobenzene.

Fractionation of stable carbon isotopes upon degradation of trichlorobenzenes was studied under aerobic and anaerobic conditions. Mineralization of 1,2,4-trichlorobenzene by the aerobic strain Pseudomonas sp. P51 which uses a dioxygenase for the initial enzymatic reaction was not accompanied by a significant isotope fractionation. In contrast, reductive dehalogenation by the anaerobic strain De...

متن کامل

Carbon isotope fractionation during the anaerobic degradation of acetate

In methanogenic environments Methanosarcinaceae are beside Methanosaetaceae the only acetate-consuming family of archaea and thus important contributors to the formation of the greenhouse gases methane and carbon dioxide. In this study, the carbon isotope fractionation during this process was determined for two species of the Methanosarcinaceae family, M. barkeri and M. acetivorans. The calcula...

متن کامل

Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1, 2-dichloroethane by Xanthobacter autotrophicus.

Carbon isotope fractionation during aerobic mineralization of 1, 2-dichloroethane (1,2-DCA) by Xanthobacter autotrophicus GJ10 was investigated. A strong enrichment of (13)C in residual 1,2-DCA was observed, with a mean fractionation factor alpha +/- standard deviation of 0.968 +/- 0.0013 to 0.973 +/- 0.0015. In addition, a large carbon isotope fractionation between biomass and inorganic carbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005